PHARMACOLOGY

EFFECT OF ETHAPHON ON THE CALCIUM ION CONCENTRATION IN SMOOTH-MUSCLE CELLS OF THE AORTA

P. V. Sergeev*, A. S. Dukhanin, V. A. Nikolaevskii, and K. M. Reznikov

UDC 616.132-018.61-008.924.1-02:615.22|-092.9

Key words: myocytes, calcium ions, ethaphon.

Ethaphon (2-diethylaminoethoxy-3-phenylpropiophenone hydrochloride) has been shown to possess antianginal, local-anesthetic, antiarrthymic, and spasmolytic activity [1, 3, 4]. It has accordingly been suggested that ethaphon may disturb intracellular and transmembrane transport of Ca²⁺ ions in the cell, which leads to relaxation of the smooth muscle and to a corresponding reduction of vascular tone, both coronary and peripheral [2].

The aim of this investigation was to study the effect of ethaphon on the Ca²⁺ ion concentration in smooth-muscle cells.

EXPERIMENTAL METHOD

Isolated smooth-muscle cells were obtained from the aorta. Isolation of smooth-muscle cells from the thoracic part of the rabbit's aorta was carried out by the method in [9] with modifications. Under control of a binocular microscope the adventitia was carefully separated from the surrounding tissues. The endothelium was removed by means of a gauze pad. The muscular layer was divided longitudinally, fixed with slight stretching to a plastic plate, and immersed in calcium-free HEPES-buffer (NaCl 140 mM, KCl 4 mM, MgCl₂ 2 mM, K₂HPO₄ 1 mM, glucose 10 mM, HEPES 10 mM, pH 7.4). After incubation for 1 h at 37°C the tissue was transferred into calcium-free HEPES-buffer containing collagenase (1 mg/ml), trypsin inhibitor (0.5 mg/ml), and bovine serum albumin (2 mg/ml). As a result of enzyme treatment for 1 h the muscle tissue became friable, it was divided into small pieces with a razor blade, and treated with versene. The resulting homogenate was resuspended through a plastic pipette for 15 min and filtered through nylon gauze. The dispersed cells were sedimented by centrifugation at 30g for 5 min. The residue was washed twice and finally resuspended in 10 ml of HEPES-buffer (cell concentration 1·106/ml). The cells were counted in a Goryaev's chamber. Viability was assessed by the trypan blue test [8].

The intracellular concentration of free Ca²⁺ ions in the cytoplasm of the myocytes (Ca_{in}²⁺) was determined. Loading of the cells with the fluorescent calcium ion indicator fura-2/AM ("Calbiochem") was carried out as in [7]. A solution of fura-2/AM was added to the isolated myocytes to a final concentration of 3 μ M and the cells were incubated for 30 min at 37°C, after which they were washed and resuspended in medium containing 140 mM NaCl, 1 mM Na₂HPO₄, 1 mM MgSO₄, 1 mM CaCl₂, 5 mM glucose, and 10 mM HEPES-NaOH, pH 7.35. Next, 2 ml of the suspension (10⁶ cells in 1 ml) was transferred into the cell of an MPF-3 spectrofluorometer (Hitachi) and thermostatted at 37°C. The wavelengths of excitation were 350 and 385 nm and of recording 500 nm. Ca_{in}²⁺ was calculated by the formula [6]:

$$Ca_{in}^{2+} = K_d(R - R_0)/(R_1 - R),$$

Department of Molecular Pharmacology and Radiology, N. I. Pirogov Second Moscow Medical Institute. Department of Pharmacology, Voronezh Medical Institute. Translated from Byulleten' Éksperimental'noi Biologii i Meditsiny, Vol. 112, No. 8, pp. 146-148, August, 1991. Original article submitted February 5, 1991.

^{*}Corresponding Member of the Academy of Medical Sciences of the USSR.

TABLE 1. Effect of Ethaphon on Basal Ca²⁺ Level (in nM) in Smooth-Muscle Cells of Rabbit Aorta $(M \pm m)$

	Ethaphon concentration in incubation medium, M								
Experimental conditions	1-10-7	2 · 106	5-106	1.10-5	2.10-5	5-10-5	1.104		
Ethaphon p	123±5	117 <u>±</u> 4	106±6	93 ± 3 < 0,05	89±2 <0,01	147 <u>+</u> 7	151 ± 6 <0.05		
Control (ethaphon absent)	120 <u>±</u> 6								

Legend. Results of 4-6 independent experiments; p) statistical significance of difference from control. Here and in Table 2, effect of ethaphon was recorded 5 min after beginning of incubation of preparation with cells.

where R denotes the ratio F_{350}/F_{385} for the test specimen (F_{350} and F_{385} denote the intensity of fluorescence at wavelengths of excitation of 350 and 385 nm, respectively); R_0 , the ratio F_{350}/F_{385} under conditions when Ca_{in}^{2+} is minimal [7]; R_1 , the ratio F_{350}/F_{385} under conditions of calcium saturation of the probe, which was determined by adding digitonin (40 μ M) to the cell suspension; K_d , the equilibrium constant of formation of a complex between fura-2 and calcium ions, with a value of 225 nM at 37°C [6]. The results were analyzed by statistical methods on the Amstrad PC 1640 personal computer, using the "Microstat" package of applied statistical programs.

EXPERIMENTAL RESULTS

The Ca²⁺ concentration in resting aortic smooth-muscle cells was 120 ± 21 nM (n = 8). Addition of ethaphon to the cell suspension up to a final concentration of $1 \cdot 10^{-7} \cdot 3 \cdot 10^{-6}$ M did not change the basal Ca_{in}²⁺ level, at least during incubation for 20 min with the preparation. In concentrations of $5 \cdot 10^{-6} \cdot 2 \cdot 10^{-5}$ M ethaphon caused a dose-dependent decrease in Ca_{in}²⁺, recorded as a decrease in the intensity of fluorescence of fura-2 during excitation of the sample in the short-wave region (350 nm) and an increase in the intensity of fluorescence F_{385} (Table 1). The decrease in Ca_{in}²⁺ began after 1-2 min and reached a maximum 4-6 min after addition of the compound. In high concentrations (0.5 \cdot 10^{-4} \cdot 10^{-4} M) ethaphon, on the contrary, raised the intracellular Ca²⁺ level. This effect was observed immediately after the addition of ethaphon to the incubation medium, due evidently to disturbance of the structure of the plasma membranes of the aortic smooth-muscle cells by it.

It was decided to study the effect of ethaphon on the elevated Ca_{in}^{2+} level, for we know that this compound has a direct myotropic action, and exhibits spasmolytic activity [5].

The Ca_{in}²⁺ level was raised by two methods: 1) by activation of the cells with a 10⁻⁵ M solution of acetylcholine; 2) by placing the smooth-muscle cells in medium containing 118 nM KCl, by replacing the NaCl with an equimolar concentration of KCl.

Incubation of the cells with acetylcholine for 2 min almost doubled the Ca_{in}^{2+} level (185 \pm 7 nM). The effect of a high potassium ion concentration (118 mM) on Ca_{in}^{2+} also was exhibited quickly (in the course of 1 min the intensity of fluorescence F_{350} reached a maximum and remained almost unchanged during 10 min of observation).

Against the background of an elevated Ca_{in}^{2+} , the action of ethaphon began to be manifested with a concentration of $5 \cdot 10^{-7}$ M. As the data in Table 2 show, ethaphon lowered Ca_{in}^{2+} , and this action was most marked against cells kept in hyperpotassium medium. In that case, the maximal inhibitory activity of ethaphon was seen in a concentration of $5 \cdot 10^{-6}$ M. A further increase in the dose of ethaphon caused no significant change in Ca_{in}^{2+} .

The increase in the Ca_{in}^{2+} concentration observed when the cells are placed in medium with a high K^+ concentration is known to be depolarization of the cytoplasmic membrane and to the entry of Ca^{2+} ions inside the cell from outside, through voltage-dependent calcium channels. The increase of Ca_{in}^{2+} in smooth-muscle cells under the influence of acetylcholine is due to interaction between the neurotransmitter and membrane receptors, followed by opening of chemically sensitive Ca^{2+} -channels and mobilization of calcium ions from their intracellular depots (the sarcoplasmic reticulum).

TABLE 2. Effect of Ethaphon on Increase in Ca_{in}^{2+} (in nM) Due to Action of Acetylcholine and of 118 mM K^+

Experimental	Ethaphon concentration in incubation medium, M									
conditions	0	1-10-7	5-107	1-10-6	2.10-6	5-106	1-10-5			
Acetylcholine 10 ⁻⁵ KCl 118 mM	185±7 197±11	191±9 193±9	174±12(94) 182±10(92)	166±8(90) 171±12*(87)	159±8*(86) 153±10*(78)	152±7*(82) 134±8*(68)	158±10*(85) 133±11*(67)			

Legend. Mean values and confidence intervals at the p = 0.05 level shown. Fall in Ca^{2+} level (in % of initial level) given in parentheses; significant differences marked by an asterisk.

The action of ethaphon is thus most marked against transmembrane transport of Ca²⁺ ions from the extracellular space. Meanwhile, the effect of the drug on the concentration and transport of calcium ions from the intracellular pool is exhibited less strongly.

LITERATURE CITED

- 1. L. L. Kirichenko, V. V. Smirnov, A. K. Naryzhnyi, and L. M. Morozova, Sov. Med., No. 3, 84 (1986).
- 2. V. A. Nikolaevskii, "Pharmacologic properties of new coronary dilators: ethaphon and its derivatives," Dissertation for the Degree of Candidate of Medical Sciences, Voronezh (1968).
- 3. V. A. Nikolaevskii and M. P. Aleksyuk, Khim.-Farm. Zh., No. 9, 1079 (1987).
- 4. V. A. Nikolaevskii, V. P. Shmelev, M. P. Aleksyuk, et al., Khim.-Farm. Zh., No. 12, 1445 (1989).
- 5. L. E. Kholodov, M. G. Glazer, and R. V. Makharadze, Pharmacokinetics, Pharmacodynamics, and Biotransformation of Antiarrhythmics [in Russian], Tbilisi (1988), p. 607.
- 6. G. Grynkyewicz, M. Poenie, and R. Y. Tsien, J. Biol. Chem., 260, 3440 (1987).
- 7. A. Malgarolo, D. Millani, J. Meldolesi, and T. Pozzan, J. Cell Biol., 105, 2145 (1987).
- 8. M. Smith, H. Thor, and S. Orrenis, Science, 213, 1257 (1981).
- 9. K. Sumimuto and H. Kurijama, Pflügers Arch., 406, 173 (1986).